\qquad
\qquad

1. Plot the following points on the graph above: $\mathrm{R}(-3,2), \mathrm{T}(-3,7), \mathrm{W}(-9,2), \mathrm{S}(-9,7)$. Now connect the points.
2. Name the shape: \qquad . Count the number of squares contained within the figure \qquad .
3. Is there an easier way to find the number of squares contained within the figure? Explain:
4. So to find the area for a rectangle you could use the formula: \qquad
5. Transfer this formula into the box to the right of the graph that is labeled "RECTANGLE". Explain why your final units should be listed as "units" ${ }^{2 "}$.
\qquad
\qquad
6. Next translate (move) the figure 12 units right and two units down. Is the new figure congruent to the old one? \qquad How do you know? \qquad
7. What figures are created when you draw a diagonal through this figure? \qquad Do these new figures have equal areas? \qquad Color in one of the shapes created in the new figure.
8. What part of the rectangle area does this new shape represent? \qquad The formula to find the area of a triangle is: \qquad
9. When using this formula, the "base" and the "height" of the triangle are \qquad -.
10. Transfer the formula for a triangle into the boxes at the right of the graph.
11. Plot the following points on the graph above: $A(-3,-4), B(-5,-7), C(-8,-4), D(-10,-7)$. Now connect the points.
12. Name the shape: \qquad What is the height of the figure? \qquad What is the length of the base? \qquad
13. The formula to find the area of a \qquad is \qquad .
14. When using this formula, the "base" and the "height" are \qquad .
15. Transfer the formulas for these figures into the boxes at the right of the graph.
16. Plot the following points on the graph: $H(2,-2), J(6,-2), K(8,-6), G(1,-6)$. Connect the points.
17. Name the shape: \qquad What is the height of the figure? \qquad
18. Draw a diagonal. What two shapes are created? \qquad Do they have the same height? \qquad
19. Do the triangles have the same base? \qquad Fill in the following to find the area of this figure:
```
Area of Triangle #1 + Area of Triangle #2
    A=1/2bh + A = 1/2 bh
1/2 (___)(___) + 1/2(___)(___)
```

\qquad
\qquad

- If you were to put this together into one formula it would look like this: $A=1 / 2 b_{1} h+1 / 2 b_{2} h$
- Above we noted that the bases would not be the same so one is represented with b_{1} and the other is b_{2}.
- If you look at what the two pieces have that are the same you see \qquad and \qquad are the same for each.
- We could use the distributive property and pull those outside of a set of parenthesis leaving the bases (that are different) inside of the parenthesis. Now it looks like this: $A=1 / 2 h\left(b_{1}+b_{2}\right)$ The standard way that we see this formula written is $A=1 / 2 h\left(b_{1}+b_{2}\right)$.
- What property was used to move between these two formulas? \qquad
*** The two bases are always the sides that are \qquad to one another. ${ }^{* * *}$

RECTANGLE
$\mathbf{A}=I \times w$
PARALLELOGRAM
$\mathbf{A}=\boldsymbol{b} \times \boldsymbol{h}$
TRIANGLE
$\mathbf{A}=1 / 2 \boldsymbol{b} \times \boldsymbol{h}$
TRAPEZOID
$\mathbf{A}=1 / 2\left(b_{1} \times b_{2}\right) \boldsymbol{h}$
PERIMETER
$\mathbf{P}=\mathbf{a d d}$ all sides

1. Plot the following points on the graph above: $R(-3,2), T(-3,7), W(-9,2), S(-9,7)$. Now connect the points.
2. Name the shape: \qquad rectangle \qquad Count the number of squares contained within the figure._30_
3. Is there an easier way to find the number of squares contained within the figure? Explain:
instead of counting all squares you could multiply the number in the length times the number in the width
4. So to find the square area for a rectangle you could use the formula: \qquad $A=I x w$ \qquad
5. Transfer this formula into the box to the right of the graph that is labeled "RECTANGLE". Explain why your final units should be listed as "units"" \qquad answers vary; the area represents the number of squares that it would take to fill the figure \qquad
6. Next translate the figure 12 units right and two units down. Is the new figure congruent to the old one?_yes_
7. How do you know? \qquad the size did not change when it was translated-each point made the same move \qquad
8. What figures are created when you draw a diagonal through this figure? \qquad triangles \qquad Do these new figures have equal areas? \qquad yes \qquad Color in one of the triangles created in the new figure.
9. What part of the rectangle area does this represent? _ $1 / 2 \ldots$ The formula to find the area of a triangle:_A $=1 / 2 \mathrm{bh}$
10. When plugging in this formula the "base" and the "height" of the triangle must be \qquad
\qquad
11. Plot the following points on the graph above: $A(-3,-4), B(-5,-7), C(-8,-4), D(-10,-7)$. Now connect the points.
12. Name the shape: \qquad parallelogram \qquad What is the height of the figure? 3 units What is the length of the base?_5__
13. The formula to find the area of a \qquad parallelogram \qquad is \qquad A = bh_
14. When plugging in this formula the "base" and the "height" must be \qquad perpendicular \qquad .
15. Transfer the formulas for these figures into the boxes at the right of the graph.
16. Plot the following points on the graph: $H(2,-2), J(6,-2), K(8,-6), G(1,-6)$. Connect the points.
17. Name the shape: \qquad _trapezoid \qquad What is the height of the figure? \qquad 4 units \qquad
18. Draw a diagonal. What two shapes are created? \qquad triangles \qquad Do they have the same height?__yes__
19. Do the triangles have the same base?
\qquad no \qquad Fill in the following to find the area of this figure: Area of Triangle \#1 $+\quad$ Area of Triangle \#2

$A=1 / 2 b h$	+	$A=1 / 2 b h$
$1 / 2(4)(4)$	+	$1 / 2(7)(4)$
8	+	14

22 units 2
If you were to put this together into one formula it would look like this: $A=1 / 2 b_{1} h+1 / 2 b_{2} h$
Above we noted that the bases would not be the same so one is represented with b_{1} and the other is b_{2}.
If you look at what the two pieces have that are the same you see _1/2_ and _h__ are the same for each.
We could use the distributive property and pull those outside of a set of parenthesis leaving the bases (that are different) inside of the parenthesis. Now it looks like this: $A=1 / 2 h\left(b_{1}+b_{2}\right)$ The standard way that we see this formula written is $A=1 / 2\left(b_{1}+b_{2}\right) h$. What property was used to move between these two formulas? _communtative The two bases are always the sides that are \qquad parallel \qquad to one another.

